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Two problems in the gravity flow of granular materials 
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Department of Mechanical Engineering, Tulane University, New Orleans, La. 

(Received 2 January 1970 and in revised form 27 July 1970) 

Two problems representative of the gravity flow of granular materials are con- 
sidered in the context of a theory presented by Goodman (1970). The problems 
consist of steady fully-developed flow of a granular material down an inclined 
plane and between vertical parallel plates. It is shown that the dynamical 
behaviour of these materials is quite different from that of a viscous fluid. For 
the inclined flow problem, the normal stresses are not only unequal but vary 
non-linearly with depth. Also the maximum value of the mass flux distribution 
does not necessarily occur at the upper surface. For the vertical channel-flow 
problem, the material behaves somewhat like a Bingham fluid in that a plug 
region exists in the central part of the channel. The interesting feature of this 
problem is that the concentration of material volume in the shearing region 
outside the plug may either increase or decrease from the plug to the channel wall, 
depending on the boundary conditions. Experimental evidence for these 
phenomena in real granular materials is cited. 

The results of this investigation suggest that the gravity flow of granular 
materials is essentially governed by two factors-a material characteristic 
length, which is possibly related to the grain size, and the externally imposed 
constraints such as the gravity field or the pressure exerted upon the granular 
material from the confining plates. 

1. Introduction 
An analytical model for the dynamical behaviour of granular materials is 

essential to the solution of a wide range of problems associated with the handling 
and movement of materials such as soils, sands, grains, fibres, and powders. 
There are two approaches to the modelling of granular materials, the particulate 
approach and the continuum approach. In  the particulate approach one considers 
an ensemble of particles of finite size (idealized, say, as rigid or elastic spheres) 
and attempts to deduce the laws governing the mechanical behaviour of the 
entire ensemble. Notable qualitative insight into the mechanical behaviour of 
cohesionless granular materials has been obtainedwith this approach by Reynolds 
(1885), Deresiewicz (1958), Rowe (1962), and Winterkorn (1966). The continuum 
approach, on the other hand, assumes that the material properties of the ensemble 
may be represented by continuous functions so that the medium may be divided 
indefinitely without losing any of its defining properties. In  this case, the notion 
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of discrete granules is no longer retained. Continuum plasticity type models 
basedon theMohr-Coulomb criterionfor failure have been proposed by Drucker & 
Prager (1952), Shield (1955), Drucker, Gibson, & Henkel(1957)) Jenike & Shield 
(1959), and Spencer (1964). In  the area of fluidization, continuum models for 
granular materials have been investigated by Leva (1959), Zenz & Othmer (1960), 
and So0 (1967). A mathematical theory for fluidized beds incorporating the idea 
of granule distribution has been formulated by Murray (1965). A basic premise 
underlying the present investigation is that a continuum model can be employed 
for characterizing the dynamical behaviour of granular materials. 

In fi 2 the concept of volume distribution in a granular material is introduced 
and discussed. In $9 3 and 4 an appropriate dynamical representation for the 
stress is developed, and in $ 5  the equations governing the flow of granular 
materials are recorded. An inclined gravity-flow problem is considered in $6  
and a vertical channel-flow problem is considered in $ 7. The results of this study 
and the related experimental work are discussed in $8. 

2. The volume distribution function 
The distribution of the solid granular constituent in granular materials is a 

distinguishing characteristic of these materials. To account for the distribution 
of solid volume in a granular body, a kinematical variable v, called the volume 
distribution function, is introduced as a continuous function defined over the body. 
The volume distribution function serves as a continuum analogue to the concept 
of void ratio (actually, it is the reciprocal of one plus the void ratio). The volume 
distribution could also be defined as one minus the porosity. The volume V of 
granules in a granular body B is given by the integral 

m 

v=J  vdv. 
B 

In a similar manner, the mass density y of the granules themselves is introduced 
such that the mass A of granules can be expressed as 

A? = IB yud V ,  (2.2) 

where the function p( = yu) is interpreted as the bulk density of the medium. As 
the mass associated with the void space is neglected, the granular mass A may 
be regarded as the total mass of the granular material. It then follows from (2.2) 
that the continuity equation for the material has the form 

3/v+yuv.v = 0) (2.3) 

where the superimposed dot denotes the material time derivative and v is the 
spatial velocity vector. For the particular case when the granules are incom- 
pressible, i.e. 7 = 0, the expression (2.3) becomes 

++vv.v = 0. (2.4) 

This equation is simply a conservation principle for the volume of granules and, 
hence, may be determined directly from (2.1). Note that although the volume of 
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granules remains constant, the total volume may change as evidenced by the 
fact that V . v need not be zero. This idea is consistent with the concept of 
dilatancy in real granular materials. 

Since the total mass of a granular material is given by (2.2), the conservation 
of linear momentum may be written as 

V . T + yvb = y ~ i . ;  qj,j + yvbi = yvd,, (2.5) 
where T is the stress tensor and b is the body force vector. 

3. Stress representation 
A dynamical representation for the stress in granular materials was formulated 

by Goodman (1970). The essential results of that analysis are recorded here. 
We consider first the stress representation in the equilibrium situation. It is 

assumed that the specific free energy @ of the granular material depends upon 
the volume distribution v and its gradient as well as upon the density y of the 
granules and the temperature. Straightforward thermodynamic arguments lead 
to the introduction of two distinct pressures p and 9 and a stress vector h de- 
fined by 

Thermodynamic arguments show p ,  9 and h to be related by the fundamental 
equation 

The pressure p is interpreted as a material pressure related to the compressibility 
of granules, whereas the pressure @ is interpreted as a configuration pressure 
related to the volume distribution of granules. The vector h is called the 
equilibrated stress vector since it is associated with a system of self-equilibrating 
forces resulting in either a centre of compression or a centre of dilatation (cf. Love 
1926, 0 132). These dynamical quantities characterize the equilibrium or non- 
dissipative part of the stress TO, 

p = 7 2 ”  aglay, 8 = yv2 agiav, h = yv a@lavv. (3.1) 

(3.2) 9 - p  = vV.h .  

TO = - p l  - h@Vv, (3.3) 

To = - @ l + V ( V . h ) l - h @ V v .  (3.4) 

which, by (3.2), has the alternate representation 

From (3.3) and (3.1) it is noted that the equilibrium stress is totally derivable 
from the free energy function. This is analogous to the equilibrium stress in 
compressible fluids which is also deduced from the specific free energy functi0n.t 

The dissipative part of the stress in the theory for granular materials is similar 
to that of a viscous fluid, 

(3.5) 

where D is the rate of deformation tensor defined as the symmetric part of the 
spatial gradient of velocity. The viscosity coefficients h and p are, in general, 
functions of ‘y and v. 

-f The theory considered here represents a special case of a general theory which 
includes an equilibrated body force as well as an oquilibrated stress h. In the present de- 
velopment we have neglected the equilibrated body force. 

T- To = h(trD) 1 + ZpD, 

21-2 
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4. Coulomb granular materials 
The equilibrium stress representations (3.3) and (3.4) are too general to be 

amenable to problem solution. Explicit expressions for the pressures p and @ and 
the equilibrated stress vector h must be obtained. To this end the specific free 
energy per unit volume yv$ is assumed to be an isotropic function which is 
expandable in a Taylor series about V v  = 0 and v = v,, where v, is the critical 
volume distribution corresponding to the critical void ratio.? Moreover, varia- 
tions in lVvl about zero and variations in v about v, are assumed to be small. 
From these assumptions it follows as a second-order approximation that yv$ 
can be written as 

yv$ = ao+a,(v-vc)+a2(v-vv,)2+a3Vv.Vv, (4.1) 

where the coefficients are dependent on v, and are, at  most, functions of y. 
Requiring the free energy per unit volume to be positive with a minimum at 
v = vc and V v  = 0 implies that the coefficients of (4.1) are restricted by 

a. 2 0, a ,  = 0, a2 0, a3 0. (4.2) 

a. = ao+a2(v-v,)2, a = a3, Po = a 0 + a 2 v ~ ,  p = a2, (4.3~-d) 

Employing the representation (4.1) in (3.1) and introducing the notation 

yields the following expressions for p ,  @ and h 

p = (7 agolay - a,) + (y  aalay - a )  v v .  v v ,  (4.4) 

@ = -po+~V2-aVv.Vv ,  (4.5) 

h = 2aVv. (4.6) 

The equilibrium stress state (3.3) together with the representations (4.4) and 
(4.6) require that the equilibrium normal stress and equilibrium shear stress 
acting on a particular plane at  a particular point bear a special relationship to 
one another. A similar result occurs in fluid equilibrium in that the shear stress 
must always vanish. In granular material equilibrium the shear stress has a 
specific non-zero value related to the magnitude of the normal stress. To develop 
this relationship consider an arbitrary but fixed point and an arbitrary but fixed 
plane with normal n. Using (3.3) and (4.6) the normal stress T acting across the 
plane is given by T = n.(Ton) = - ~ - 2 a ( V v . n ) ~  

and is related to the shear stress S in the plane by 

(4.7) 

T 2 + S 2  = (Ton).(Ton) = p2+4ap(V~.n)2+4a2(Vv.V~) (Vv.n)2. (4.8) 

Using (4.7) to eliminate the term ( V V . ~ ) ~  in (4.8), completing the square in the 
resulting expression, and introducing the notation 

s = aVv.Vv, t = -p-uVv.Vv,  (4.9a, b )  

t The critical void ratio of a granular material is the void ratio at  which no volume change 
occurs during shearing. A granular material with a void ratio higher than the critical value 
decreases in volume during shear while a granular material with a void ratio lower than the 
critical value increases in volume during shearing. 
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then the relationship S2+(T-t)' = s2 (4.10) 

follows. Moreover, recalling the representation (4.4) for the pressure p ,  the ex- 
pression (4.9b) can be written in the form 

s = b(-t+c),  (4.11) 

where c = ao- y aao/ay, l / b  = (?/a) aa/ay. (4.12a,b) 

Combining (4.10) with (4.11) one obtains the sought after relationship between 
the shear stress S and the normal stress T acting on a particular plane at  a 
particular point in a granular material in equilibrium. Considering AS' and T as 
Cartesian co-ordinates, (4.10) is the equation for a circle centred at  S = 0, T = t 
with radius s. The relationship (4.11) requires that the circle radius be a function 
of displacement of the circle from the origin. If the relationship (4.11) is taken 
to be a sufficient as well as necessary condition for equilibrium, then this result 
is a generalization of the Coulomb stress condition of limiting equilibrium in 
granular materials in which the angle of internal friction and the cohesion are 
functions of the density y and volume distribution u. If b and c are constants, the 
traditional Mohr-Coulomb condition is obtained, i.e. the Mohr circle (4.10) is 
tangent to the straight line (4.11). In  this case the scalar functions a0, a, Po, and p 
can be determined directly from (4.3) and the differential equations (4.12). In 
particular, if Po is taken to be a constant, thenit follows from (4.12a), (4.3a), and 
(4.3 c) that 

P o  = c, (4.13) 

indicating that Po corresponds to the material cohesion which is positive by (4.2) 
and (4.3). 

When (4.5) and (4.6) are combined with (3.4) and (3.5) and the Coulomb con- 
dition is used to represent the equilibrium stress, the general constitutive equation 
has the form 

+h(trD) 1+2pD if D + 0, (4.14) I T = ( / ~ , , - P V ~ + ~ V U . V U + ~ V V . ~ V V )  l - Z a V u @ V v  

s = b ( - t + c )  if D = O .  

A material described by (4.14) in which b and c are constants is referred to as a 
Coulomb grarmlar material. 

5. Governing equations 
Henceforth, our discussion is limited to a special subclass of cohesionless 

(c = Po = 0) Coulomb granular materials in which the density y is a constant 
in the non-equilibrium regions. In these regions p and a are, therefore, material 
constants. This subclass of granular materials is characterized by 

+h(trD)1+2pD if D =I= 0, 
T = ( - , L ~ v ~ + ~ V V . V V + ~ ~ V V ~ V ) ~ - ~ L X V U @ V U  

s = -bt if D=O.  
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Substituting the dynamic stress relation (5.1) into the balance of linear 
momentum (2.5)) the differential equations 

YV+ = - ~ / ~ v V V + ~ C C V V ( V ~ V ) + ( A + ~ ) V V . V + , U V ~ V + ~ V ~  (5.2) 

are obtained. These equations, along with the continuity equation (2.4), con- 
stitute the set of governing equations for the non-equilibrium situation. 

A dimensional analysis of the differential equations (5.2) shows that, in 
addition to the usual dimensionless numbers encountered in viscous fluid theory, 
two more dimensionless parameters are of interest. The dimensionless parameter 
L, called the length ratio, is defined as the ratio of a characteristic geometric 
length I to the material characteristic length (a/@)*, 

L = (@/a)*l. (5.3) 

The number M ,  ikf = YSllP, (5.4) 
where g is the gravitational constant, is interpreted as the ratio of gravity forces 
to volume distribution forces. 

Possible boundary conditions for granular material theory consist of specifying 
conditions on the basic fields v and v or conditions on the fluxes T and h, or 
combinations thereof. The flux boundary conditions are given by 

Tn = t, (5.5) 

h.n = H ,  (5.6) 

where t is the customary stress traction and H is the traction associated with 
the equilibrated stress vector. Since H represents a system of self-equilibrating 
forces, it does not give rise to a resultant force on the surface and, hence, need 
not vanish for a free boundary to exist. The equilibrated traction is, however, 
associated with surface energy per unit area resulting in a type of surface tension 
effect. If both the equilibrated traction H and the stress traction t vanish on a 
boundary, then the boundary is said to be tension free. 

6. Inclined gravity-flow problem 
Consider an infinite slab of granular material of thickness E inclined at an 

angle 5 to the gravity field and having a tension free upper surface while sup- 
ported below by a flat plate. A Cartesian co-ordinate system fixed to the upper 
surface is employed with the x1 axis oriented down the surface and the x2 axis 
normal to the surface. 

Although the constitutive relation (5.1) serves to distinguish the material 
behaviour in the equilibrium situation from that in the non-equilibrium situation, 
the various regions of equilibrium and non-equilibrium behaviour can only be 
determined from the solution to the problem. To this end, it is assumed that the 
various regions in the granular material are characterized by the following 
assumptions in addition to the constitutive assumption (5.1): For the regions 
of equilibrium (Dij = 0 )  

(1) T i j  = 

(2) TI3 = T23 = 0, 

(3) p = constant, 
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and for the regions of non-equilibrium (Dij =k 0) 

(4) steady state, fully-developed flow, 

( 5 )  v1 = Vl(X2), v2 = v3 = 0,  

(6) Y = d X 1 ,  X Z ) .  

FIGURE 3. Mass flux profile for inclined gravity flow. 

From assumptions four and five, the motion is accelerationless and, hence, 
the balance of linear momentum for both the equilibrium and non-equilibrium 
regions is given by 

2' (6.1) 

Employing assumptions four, five and six in the continuity equation (2.4) 
restricts the volume distribution in the non-equilibrium regions to Y = v(x,), 
from which it follows that the stress in these regions, as well as the equilibrium 
regions, is a function of the x2 direction only. Using this fact in (6.1) and recalling 
that the upper surface x2 = 0 is a free surface, then throughout the medium 
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Condition (6.2) determines whether the medium is in equilibrium or not. If 
5 2 $77- g5, where g5 is the angle of internal friction (6 = sin +), then the stress 
state corresponds to a Coulomb stress state and the entire medium is considered 
to be in equilibrium; otherwise, it is innon-equilibrium. Henceforth, it is assumed 
that 5 < +m - $. 

1 2 2  

FIGURE 4. Major normal stress profile for inclined gravity flow. 

The boundary conditions for this problem are specified at the boundary 
surface x2 = 0 and along the supporting plate x2 = 1. Since the upper surface is 
tension free, then at x2 = 0 

(6.3) 
Along the supporting plate the boundary conditions are specified such that a t  

(6.4) 

Since the motion is accelerationless and the velocity field divergence free by 

3 = 0, (6.6) 

TI, = TZ2 = 0,  h, = 0. 

x2 = I, 
2 r l  = a0, v = Yo, 

where vo is the slip velocity at the plate. 

assumption five above, the governing equations (2.4) and (5.2) become 
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- Spvv, + Zavv, 222 = - yvg  sin [, 

P I ,  22 = - YV9 cos 5. 
(6.8) 

(6.7) 

Equation (6.5) simply states that the volume distribution at a material point 
does not change as one follows the motion of the point. 

- 

Y t  M'= 1.25 
FIGURE 5. Minor normal stress profile for inclined gravity flow. 

From (6.6) and (6.7) it is seen that the basic fields uncouple in the sense that 
(6.6) involves only the volume distribution. Eliminating the trivial solution 
v = 0, then (6.6) yields the general solution 

v = A sinh LY + B cosh LY + +MY sin c+ C, (6.8) 

where A,  B and C are arbitrary constants of integration, L and M are the non- 
dimensional quantities defined by (5.3) and (5.4) and Y is a dimensionless co- 
ordinate defined by 

Employing (6.8) in (6.7), the velocity field is then easily obtained, 
(6.9) Y = x z / l .  

B M 
L2 12 

ygz2r [$ sinh LY + - cosh LY + - Y3sin c+ +C Y2 + D Y + ,371 , (6.10) % = - -  
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where D and E are additional integration constants. Evaluating the five con- 
stants of integration from the boundary conditions (6.3) and (6.4) and intro- 
ducing the non-dimensional parameter 

M’ = M (sin [)/2v0 = ygl (sin 5)/2/3v0, 
then (6.8) becomes 

(6.11) 

and (6.10) can be expressed as 

v,-v, = (sinhL- sinh L Y )  
2P 

f--, l-M’+M’- L 
sinhL) ( 1 - Y 2  ) l-M’+M’- -___ 

L l+coshL 

cash L - cash L Y 
( 

) +T(l -  (6.13) 
M’ ( l+coshL 

The expressions (6.12) and (6.13) for the volume distribution and velocity show 
that the solution depends strongly on the dimensionless length ratio L and the 
dimensionless constraining number M’. The constraining number represents the 
effect of the external constraints since it is defined in terms of the gravity field 
and boundary conditions. 

We consider now the limiting cases in which the length ratio L approaches 
zero and infinity, respectively. These two limiting cases form the bounding 
solutions and, hence, delimit the influence of volume distribution on the material 
behaviour. For the limiting case described by L = 0, it  can be shown that (6.12) 

v/vo = 1, (6.14) and (6.13) become 

v1- vo = (yvo9~2/2p) (cos 5)  (1 - Y2) ,  (6.15) 

and the normal stresses determined from the constitutive relation (5.1) are given 

bY TI, = TZ2 = - yvogZ(sin<) Y .  (6.16) 

These representations show that the granular material solution reduces to that 
of an incompressible Navier-Stokes fluid. This solution is independent of the 
parameter M’ indicating that the externally imposed boundary conditions and 
gravity field do not distort the shape of the stress and velocity profiles from their 
classical linear and parabolic shapes, respectively. 

The upper limiting case represented by L tending to infinity is characterized by 

I - = (  v M‘Y (0 < Y < l), 
vo 1 ( Y  = I), 

yvogz2 cos 5 
2P 

vl-v0 = Q“( 1 - Y3), 

(6.17) 

(6.18) 

T,, = -YvogZ(sinlJM‘iY2, (6.19) 

- yv,gZ(sin 6) iM’Y2 
- yvogl(sin <) (2 - QM’ - (l/M’)) ( Y = 1). 
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Just as the lower limiting solution represents the least effect of volume distribu- 
tion on the solution, the limiting case L --f 03 represents the greatest effect. As 
the length ratio increases, the influence of volume distribution becomes more 
pronounced. The discontinuity in the solution at  the supporting plate ( Y  = I )  
is a boundary effect. For large values of length ratio L, the volume distribution 
and minor normal stress vary strongly in a small region near the boundary. If 
M’ equals unity, however, the discontinuities at the boundary vanish. This strong 
dependence on M’ demonstrates the important effect of the external constraints. 

Profiles for the volume distribution, dimensionless velocity, and dimensionless 
stress defined by 

(6.21) 

and also for the dimensionless mass flux vVl are shown in figures 1 to 5. These 
plots are presented for specified values of M’ over the entire range of length ratio 
L and form two sets of curves; one set with M’ less than unity and the other 
with N’ greater than unity. Figure 1 illustrates the strong dependence of volume 
distribution on M‘. For M‘ < 1, the volume distribution increases monotonically 
with depth, whereas, for M’ > 1, the volume distribution attains a local maxi- 
mum. The boundary effect for large length ratios is particularly evident in this 
figure. Figure 3 shows the interesting result that the maximum mass flux in the 
flow does not necessarily occur at  the upper surface. There is no parallel to this 
type of behaviour in incompressible fluid theory. Figures 4 and 5 show the normal 
stress distributions to be non-linear for non-zero length ratios. Moreover, the 
magnitudes of the major and minor stresses are unequal and also less than that 
predicted by hydrostatic pressure theory. 

7. Vertical channel-flow problem 
In  this section, the problem of flow 0f.a granular material between two infinite 

parallel flat plates aligned with the gravity field is considered. The plates are 
spaced a distance 21 apart and a Cartesian co-ordinate system centred between 
the plates is employed. The x1 axis is oriented normal to the plates and the x2 
axis is along the direction of flow. 

As in the previous problem, the assumptions concerning flow in regions of 
equilibrium and non-equlibrium are presented as follows: For the regions of 
equilibrium , 

(1) T i j  = qjw, 
(2) T13 = T23 = O ,  T12(x1) = - T12( 

(3) p = constant, 

and for the regions of non-equilibrium, 

(4) steady state, fully-developed flow, 

(5) v2 = v2(x1) = v2( -xl), v1 = v3 = 0, 

(6) v = v ( x ~ , x ~ )  = V( -x1,x2). 
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From the above assumptions it follows that the motion is accelerationless and 
that the stresses throughout the medium are only a function of the x1 direction. 
Hence, the balance of linear momentum yields the component equations 

T1,l = 0, (7.1) 
T21, 1 = - YV. (7.2) 

Integrating (7.1) gives Tll = -To, (7.3) 

Tl2(0) = 0. (7.4) 

where To is a constant. Since T12 must be an odd function of xl, then 

For non-zero To, the stress state described by the relations (7.3) and (7.4) must 
be a Coulomb stress state and, consequently, the material in the centre of the 
channel must be in equilibrium. This equilibrium condition implies the existence 
of a uniform velocity, or plug flow, in the centre region. The interface distance 
between the plug region and shearing region is denoted by x1 = ? a  and is 
introduced as an unknown to be determined by the solution to the problem. 

The boundary conditions are specified along the constraining plates. It is 

w2 = wo, u = vo. (7.5) 
assumed that a t  x1 = f I 

The differential equations for the non-equilibrium region are given by 

v, 111 - ( P b )  v, 1 = 07 

P2,11= -YW, 
which yield the solutions 

v = AcoshLX+BsinhLX+C (7.8) 

and 
coshLX+-sinhLX++CX2+DX+E], B (7.9) 

L2 

where A ,  B, C, D,  E are integration constants, L is the non-dimensional length 
ratio and X is a dimensionless co-ordinate defined by 

x = xl/l. (7.10) 

Employing assumptions five and six which restrict the volume distribution and 
velocity field to be even functions, then one must require 

B = D = O .  (7.11) 

Noting that the volume distribution must satisfy the stress condition 

T11( f 1) = -To, (7.12) 

then the remaining integration constants can be determined from (7.12) and 
the boundary conditions (7 3). Introducing the dimensionless parameter 

(7.13) 

then (7.8) and (7.9) can be expressed as 
M” = MTo/yvig1 = T0//3v& 

cosh L & (I  + M” sinh2 L)B 
sinh2L 

) (cosh L- cosh L X ) ,  

) (coshL-coshLX) 

(7.14) 
V 
- = 1 -  

cosh L f (1 + M“ sinh2 L)B 
sinh2 L 

) (1 - x 2 ) ] .  (7.15) 
1 f cosh L( 1 + M” sinh2L)* 

sinh2 L 
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The parameter M“ appearing in the expressions (7.14) and (7.15) is a con- 
straining number analogous t o  M‘ of the previous problem. Along with the length 
ratio L, it characterizes the flow. The number M” represents the effect of the 
pressure To from the confining plates. Unlike M‘, it  does not explicitly involve 
the gravity field or the geometric length. 

From (7.14) and (7.15) it is seen that the problem has two solutions depending 
on the sign of the square root. However, upon determining the stresses from the 

O6 c 

1 
O0 2 4 6 8 10 

Length ratio L 

FIGURE 6. Interface distance for vertical channel flow problem (S = 0.3). 

constitutive relation (5.1), it is noted that the solution involving the positive 
square root must yield positive normal stresses T22. Since cohesionless granular 
materials cannot generally support tensile stresses, this constraint is physically 
unrealistic. The solution with the positive square root is consequently disre- 
garded. The solution for the problem is based on the negative square root. 

Recalling that the central region of the channel is in equilibrium characterized 
by plug flow, then the above solution is only valid in the regions near the channel 
walls. To determine the interface distance x1 = rt a between the plug and shearing 
regions, note that the Coulomb condition 

T12 = -Totan$ (7.16) 

must be satisfied a t  the interface. Requiring the shear stress to be continuous 
across the interface, then the value of the shear stress given by (7.16) must corre- 
spond with the value computed from (7.15). Denoting the dimensionless interface 
distance and dimensionless Coulomb shear stress by 

a = all, S = T,tan~/yv,gl, (7.17) 

then one obtains the condition 

a = s, 
(7 .18)  

1 - cosh L( 1 + M” sinh2 L); 
sinh2L 

) sinhLG- ( cosh L - (1  + M” sinh2 L)J ( Lsinh2L 
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which serves to determine the interface distance in terms of the parameters L, 
M" and 8. Using the value of a, the new dimensionless variable 

- X - a  
X = - - - -  (0 < x < 1) (7.19) 

1--a 

can then be introduced into the expressions (7.14) and (7.15) and, in this way, 
restrict these expressions to the shearing region defined by Z < X < 1. A plot 
of dimensionless interface distance Z versus length ratio L is shown in figure 6 

I 

a 1 
I 
7. 
I M"=0.5 

I 

v '  
I F: 

FIGURE 7. Volume distribution profile for vertical channel flow. 

for selected values of M and the parameter S. For M" > 1, the interface distance 
(or, equivalently, the width of the plug region) decreases as L increases; for 
M" < 1, the converse situation results. M" = 1 represents a critical situation in 
which the interface distance is a constant for all values of L. 

The limiting cases for the channel-flow problem will now be discussed. For 
L = 0, the solution is given by (7.20) Y / V o  = 1, 

(7.21) 
(7.22) 

As in the inclined gravity-flow problem, the lower limiting case corresponds to 
the solution for an incompressible fluid. However, in this problem, the granular 
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material behaves more like a Bingham fluid in that a region of plug flow exists. 
Note that the pressure does not increase with depth, but is a constant throughout 
the shearing region. 

FIGURE 8. Velocity profile for vertical channel flow. 

For the upper limiting case, the following expressions are obtained: 

(7.23) 

v2- ql = (rvosl2/2p) (4"') (1 - X 2 ) ,  (7.24) 

= - (7.25) 

Tz'22 = ( ~ ~ , ~ " ) ( 4 ( y ' ~ / ~ ) - ~ f f - 2 )  ( O  ( X  = 1) .  < "'I (7.26) 

Once again, the discontinuities at the walls are indicative of a boundary effect. 
If M" = 1, the discontinuities at the boundary vanish. The solution then reduces 
to that of the lower limiting case, and since the two limiting solutions are the 
bounding solutions for the problem, it follows that every solution must be 
identical. In this critical condition, the granular material behaves as an in- 
compressible fluid irrespective of the length ratio L. 
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Dimensionless forms of the volume distribution and velocity, 

(7.27) 

as well as the dimensionless mass flux Z2, are shown in figures 7, 8, and 9, re- 
spectively, for specified values of M" and for the complete range of L. The curves 
are presented for M" greater and less than unity and are plotted against the 

- 
v = v/vo, E2 = 2/44. - v0)/yvogZ2, 

FIGURE 9. Mass flux profile for vertical channel flow. 

non-dimensional co-ordina,te x defined by (7.19) so that only the region outside 
the plug is represented. The figures show that the magnitude of M" relative to 
unity strongly influences the solution to the problem. As illustrated in figure 7, 
the volume distribution increases monotonically from the plug to the wall for 
M" < 1 and decreases monotonically for M" > 1. Also the velocity and mass 
flux profiles 'fan out' in a direction that is dependent on H". If M" < 1, the 
profiles decrease with L whereas, if M" > 1, the profiles increase with L. 

To conclude this section, consider the problem of optimizing the flow rate 
through the channel. For a given granular material and a given channel width 
(or, equivalently, for a given length ratio L),  the flow rate is governed by the 
constraining number MI'. Since the mass flux increases with M" and the maximum 

22 FLM 45 
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flux in the channel occurs in the plug region, one would expect the optimum flow 
rate to be achieved by maximizing M”. However, figure 6 shows that the width 
of the plug region decreases as M“ increases. Consequently, the optimum flow 
rate through the channel may be achieved at  some intermediate value of M”. 

8. Concluding remarks 
The results presented here for inclined gravity flow and vertical channel flow 

d a granular material demonstrate the importance in the present theory of the 
two dimensionless numbers, the length ratio L and a constraining number M‘ 
or M .  The length ratio represents the effect of volume distribution on the 
dynamical behaviour whereas the constraining number represents the effect of 
external constraints such as the gravity field and boundary conditions. For small 
values of length ratio, it is shown that the material response is essentially that of 
an incompressible viscous fluid. From this result one might conjecture that the 
length ratio is associated with the material grain size since granular materials 
composed of ‘ small ’ granules are known to behave in a fluid-like fashion. Materials 
with large grains exhibit behaviour quite distinct from fluid behaviour. 

Since a collection of granules forms a granular body only by virtue of a con- 
straining force field, like a body force field, or by virtue of being confined in a 
container, it is apparent that the constraining numbers M‘ and M“ are very 
significant parameters in the theory. Indeed, for the two problems considered, 
if there is no gravity field ( g  = 0) or no constraining plates (To = 0)) then M’ 
and M” are zero and it follows that the normal stresses must also be zero. Con- 
versely, requiring the normal stresses to be non-zero implies t h a t  M’ and M” 
must be non-zero. Although, by definition, M‘ and M” are only restricted to be 
positive, the range of values for the constraining numbers must depend on the 
boundary conditions and body force field which admit physically realistic values 
for the stresses. The range of values for M’ and M” used in this study were 
determined from the normal stress representations (6.20) and (7.26). Requiring 
the minor normal stress to be compressive for the entire range of length ratios 
considered, including the upper limiting case, then the following restrictions 

(8.1) 
were obtained: 

(8.2) 

0.5 < M’ < 2 + 4 2 ,  

0.5 < ,JMtt 6 2+J2 .  

These inequalities show that the requirement that all normal stresses be com- 
pressive severely limits the range of the constraining numbers. From these re- 
strictions and the definitions (6.11) and (7.13) for M’ and M”,  respectively, 
it follows that the ratio of boundary volume distribution v, to the confining 
force, vf/To and vo/ygZ, vary little for these problems. 

Some experimental evidence for the results obtained in this investigation 
exists. Among the early experimental work in the flow of granular materials is 
tha t  of Howard (1939). The solid concentration, velocity, and mass flux profiles 
determined by Howard for the flow of sand in a 4in. pipe are in qualitative 
agreement with the results for inclined flow if M’ < 1. Of interest is the local 
maximum obtained for the mass flux profile. Commenting on the investigation 
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of Howard, Dane1 (1939) notes that “if the concentration distribution is fairly 
uniform.. .the conditions are nearly those of an homogeneous fluid”. This state- 
ment is consistent with the predicted behaviour for small length ratios. Later 
work by Durand (1953) and Newitt, Richardson & Shook (1962) with fine sands 
confirm the findings of Howard. In addition, Newitt, Richardson & Shook show 
that coarse materials such as coarse sands and gravel exhibit solid concentration 
profiles like those for the case when M‘ > 1. 

For two-phase gas-solid flow of 50p glass particles, So0 et al. (1964) observed 
that “the nature of the concentration, mass flow, and velocity distributions of 
solid particles is such that the concentration increases toward the wall of the 
pipe, mass flow decreases toward the wall, and velocity is less than or equal to 
that of the stream at the core”. These observations are in agreement with the 
results for channel flow if M” < 1. Similar experimental data was obtained by 
Van Zoonen (1962) who employed 20-1OOp particles. Experimental evidence for 
a decrease in solid concentration toward the wall of a square duct is given by 
Peskin & Dwyer (1965). This gives qualitative support to the analytical results 
for M” > 1. 

We thank a referee for criticism that led to an improvement in this paper. 
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